A Numerical Algorithm for L2 Semi-discrete Optimal Transport in 3d

نویسنده

  • Bruno Lévy
چکیده

This paper introduces a numerical algorithm to compute the L2 optimal transport map between two measures μ and ν, where μ derives from a density ρ defined as a piecewise linear function (supported by a tetrahedral mesh), and where ν is a sum of Dirac masses. I first give an elementary presentation of some known results on optimal transport and then observe a relation with another problem (optimal sampling). This relation gives simple arguments to study the objective functions that characterize both problems. I then propose a practical algorithm to compute the optimal transport map between a piecewise linear density and a sum of Dirac masses in 3D. In this semi-discrete setting, Aurenhammer et.al [8th Symposium on Computational Geometry conf. proc., ACM (1992)] showed that the optimal transport map is determined by the weights of a power diagram. The optimal weights are computed by minimizing a convex objective function with a quasi-Newton method. To evaluate the value and gradient of this objective function, I propose an efficient and robust algorithm, that computes at each iteration the intersection between a power diagram and the tetrahedral mesh that defines the measure μ. The numerical algorithm is experimented and evaluated on several datasets, with up to hundred thousands tetrahedra and one million Dirac masses. Résumé. Cet article décrit un algorithme numérique pour calculer l’application de transport optimal L2 entre deux mesures μ et ν, où μ dérive d’une densité ρ linéaire par morceaux (supportée par un maillage tétraédrique), et où ν est une somme de masses de Dirac. Je donne tout d’abord une présentation élémentaire de quelques résultats connus sur le transport optimal, et observe ensuite une relation avec un autre problème (l’échantillonage optimal). Cette relation fournit des arguments simples pour étudier les fonctions objectifs caractérisant les deux problèmes. Je propose ensuite un algorithme pratique pour calculer le transport optimal entre une densité linéaire par morceaux et une somme de masses de Dirac en 3D. Dans ce cas semi-discret, Aurenhammer et.al [8th Symposium on Computational Geometry conf. proc., ACM (1992)] ont montré que l’application de transport optimal est déterminée par les poids d’un diagramme de puissance. Les poids optimaux sont calculés en minimisant une fonction objectif convexe à l’aide d’une méthode quasi-Newton. Pour évaluer cette fonction objectif et son gradient, je propose un algorithme efficace et robuste, qui calcule à chaque itération l’intersection entre un diagramme de puissance et le maillage tétrahédrique qui définit la mesure μ. L’algorithme numérique est expérimenté et évalué sur plusieurs jeux de données, comportant jusqu’à plusieurs centaines de milliers de tétraèdres et un million de masses de Dirac. 1991 Mathematics Subject Classification. 49M15, 35J96, 65D18.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

VARIATIONAL DISCRETIZATION AND MIXED METHODS FOR SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS WITH INTEGRAL CONSTRAINT

The aim of this work is to investigate the variational discretization and mixed finite element methods for optimal control problem governed by semi linear parabolic equations with integral constraint. The state and co-state are approximated by the lowest order Raviart-Thomas mixed finite element spaces and the control is not discreted. Optimal error estimates in L2 are established for the state...

متن کامل

A Newton algorithm for semi-discrete optimal transport

Many problems in geometric optics or convex geometry can be recast as optimal transport problems and a popular way to solve these problems numerically is to assume that the source probability measure is absolutely continuous while the target measure is finitely supported. We introduce a damped Newton’s algorithm for this type of problems, which is experimentally efficient, and we establish its ...

متن کامل

Numerical algorithm for discrete barrier option pricing in a Black-Scholes model with stationary process

In this article, we propose a numerical algorithm for computing price of discrete single and double barrier option under the emph{Black-Scholes} model. In virtue of some general transformations, the partial differential equations of option pricing in different monitoring dates are converted into simple diffusion equations. The present method is fast compared to alterna...

متن کامل

Developing an urban congestion pricing model by considering sustainability improvement and using a multi-objective optimization approach

This paper introduces a Travel Demand Management (TDM) model in order to decrease the transportation externalities by affecting on passengers’travel choices. Thus, a bi-objective bi-modal optimization model for road pricing is developed aiming to enhance environmental and social sustainability by considering to minimize the air pollution and maximize the social welfare as its objectives. This m...

متن کامل

IMPROVING COMPUTATIONAL EFFICIENCY OF PARTICLE SWARM OPTIMIZATION FOR OPTIMAL STRUCTURAL DESIGN

This paper attempts to improve the computational efficiency of the well known particle swarm optimization (PSO) algorithm for tackling discrete sizing optimization problems of steel frame structures. It is generally known that, in structural design optimization applications, PSO entails enormously time-consuming structural analyses to locate an optimum solution. Hence, in the present study it i...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015